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Motivation

Economic theory motivates shape restrictions: monotone or convex stochastic
discount factor.

Learning without parametric or structural assumptions.

Learn flexibly without imposing shape restrictions during estimation procedure.

Balancing reward and risk: mean-variance / Sharpe-optimal objective.

Need global, scalable inference applicable to large datasets.
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Research goal

Build a flexible learning setup under a mean-variance objective.

Inference pipeline that can estimate economically relevant functions.

Test their global shape restrictions (monotonicity/convexity) with statistical
guarantees.
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Contributions

Nonparametric learning framework under mean-variance objective that
depends on a function and its derivatives.

Finite-dimensional representation space for the optimal solution.

Statistical guarantees — consistency, asymptotic normality, finite-sample
deviation bound (high-probability).

Joint Wald-type test statistic for shape inference over grids.

Scalable computational procedure applicable for large datasets.
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Methodology

Specify admissible space of nonlinear functions as a Sobolev-type reproducing
kernel Hilbert space (RKHS) H that contains sufficiently smooth functions.

H ⊂ C s(X ), 〈f , g〉H :=
∑

|α|≤s

〈∂αf , ∂αg〉L2 .

Let z = (x , y) ∈ X × Y be distributed according to underlying probability P.

Target functional linear in unknown smooth function h ∈ H and its derivatives:

R(h; z) :=
∑

|α|≤s

wα(z) ∂αh(x).
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Mean-variance optimization

Population objective (Tikhonov regularized):

hλ := argmin
h∈H

{
−E[R(h; z)] + 1

2V[R(h; z)] + λ
2 ‖h‖2

H
}

. (1)

Data {z i = (xi , yi)}N
i=1 ∼ P; empirical distribution P̂ := 1

N
∑N

i=1 δz i .

Empirical objective (Tikhonov regularized):

ĥλ := argmin
h∈H

{
−Ê[R(h; z)] + 1

2 V̂[R(h; z)] + λ
2 ‖h‖2

H
}

. (2)

Problems 1 and 2 are convex: mean → reward, variance → risk penalty,
regularization → complexity control.
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Optimal representation

Linearity implies mean and variance terms can be embedded in RKHS H.

Representer theorem: The optimal solution to Problem 2 has the form

ĥλ =
N∑

i=1

∑
|α|≤s

ĉi,α ∂αφ(xi). (3)

Optimal working subspace: span{∂αφ(xi) : |α| ≤ s, 1 ≤ i ≤ N}.

Nonparametric infinite-dimensional optimization becomes solving for finitely
many coefficients — solved via quadratic program.
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Asymptotic properties

Under some regularity assumptions, the following hold:

Asymptotic consistency:

ĥλ
a.s.−→ hλ as N → ∞.

Asymptotic normality:

√
N

(
ĥλ − hλ

)
d−→ N (0, Cλ),

where Cλ : H → H is a covariance operator.
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Finite-sample properties

For any δ ∈ (0, 1), it holds with sampling probability at least (1 − δ):

Finite-sample deviation bound:

‖ĥλ − hλ‖H ≤ CFS(δ, ‖hλ‖) λ−1 N−1/2,

where CFS is a positive coefficient.

High-probability bound matching Monte Carlo rate up to regularization.

Estimation error depends on confidence level δ, size of true solution hλ,
regularization hyperparameter λ and sample size N.
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Inference for shape properties

Test if shape property holds jointly on random grid Z :=
{

ξj
}n

j=1
⊂ X .

Object of interest: θ :=
[
∂αhλ(ξj)

]n
j=1

∈ Rn.

Hypothesis test:

H0 : θ ≥ 0 vs H1 : there exists j such that θj < 0. (4)

Least favorable null: θ = 0 (all inequalities binding).

Examples: α = 0 → positivity, α = 1 → monotonicity, α = 2 → convexity.
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Test statistic I

Building blocks:

(i) Access to object of interest: θ̂ :=
[
∂α ĥλ(ξj)

]n
j=1

∈ Rn;

(ii) Consistent plug-in covariance matrix Ω̂λ of Ωλ ∈ Rn×n.

Test statistic:
WN := min

c≥0
N

(
θ̂ − c

)> Ω̂
−1
λ

(
θ̂ − c

)
. (5)

Asymptotic distribution: Under least favorable null θ = 0,

WN
d−→ W ∼ χ2

n − χ̄2(Ωλ,Rn
+).
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Test statistic II

Test statistic WN is the scaled distance-to-feasibility for least favorable null.

Measures the projection error under whitening by Ω̂
−1/2
λ .

Computed via non-negative least squares:

WN = N min
c≥0

∥∥Ω̂
−1/2
λ c − b

∥∥2
2
, b := Ω̂

−1/2
λ θ̂.

The p-values are obtained by Monte Carlo calibration.
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Application: asset pricing

Fundamental challenge in asset pricing: understand investors’ risk preferences
and how these shape market dynamics.

Stochastic discount factor (SDF) prices assets: under no-arbitrage, price of
any asset is the expected value of its future payoff discounted by the SDF.

Defined by connecting physical probability P to risk-neutral probability Q:

M̃t := dQ
dP

∣∣
Ft

, Ft := information at time t.

Expected utility theory predicts SDF should be monotonically decreasing and
convex in returns — proportional to marginal utility.
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Learning the stochastic discount factor (Luzzi et al. (2025))

Estimate SDF without parametric or structural assumptions using options
trading strategy on the S&P 500.

Trade SDF (projected onto returns) via Carr-Madan option portfolio.

Equivalence between trading (shorting) the SDF and maximizing
mean-variance portfolio (Hansen and Jagannathan (1991)).

Optimal allocations in mean-variance sense identified by derivatives of SDF.

Take random grids of market returns and volatility states: test whether
estimated SDF satisfies monotonicity / convexity properties.



Rohan Sen: Kernel-based nonparametric tests for shape constraints | Application Page 17/28

Plot of SDF surface (monthly options)
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Key takeaways

Maturity and volatility heterogeneity: SDF varies strongly across maturity
horizons and also volatility states.

Monthly options: SDF is near-linear and monotonically decreasing across
volatility states.

0DTE options: Monotonicity almost always rejected; convexity is not rejected
with very high p-values — consistent with U-shaped pattern.

Results are robust across grids and grid sizes.



Thank you!

Link to the paper.

https://arxiv.org/abs/2510.16745


Rohan Sen: Kernel-based nonparametric tests for shape constraints | References Page 23/28

References I

Alaoui, A. E. and M. W. Mahoney (2015). “Fast randomized kernel ridge
regression with statistical guarantees”. In: Proceedings of the 29th International
Conference on Neural Information Processing Systems - Volume 1. Montreal,
Canada, pp. 775–783.

Aubin-Frankowski, P.-C. and Z. Szabo (2022). “Handling Hard Affine SDP
Shape Constraints in RKHSs”. In: Journal of Machine Learning Research
23.297, pp. 1–54.

Birke, M. and N. Neumeyer (2013). “Testing Monotonicity of Regression
Functions – An Empirical Process Approach”. In: Scandinavian Journal of
Statistics 40.3, pp. 438–454.



Rohan Sen: Kernel-based nonparametric tests for shape constraints | References Page 24/28

References II

Boudabsa, L. and D. Filipović (2022). “Machine learning with kernels for
portfolio valuation and risk management”. In: Finance and Stochastics 26.2,
pp. 131–172.

Caponnetto, A. and E. De Vito (2007). “Optimal Rates for the Regularized
Least-Squares Algorithm”. In: Foundations of Computational Mathematics 7.3,
pp. 331–368.

Cucker, F. and S. Smale (2001). “On the mathematical foundations of learning”.
In: Bulletin of the American Mathematical Society 39, pp. 1–49.

Filipović, D., M. Pelger, and Y. Ye (2022). “Stripping the Discount Curve - a
Robust Machine Learning Approach”. In: SSRN Electronic Journal.



Rohan Sen: Kernel-based nonparametric tests for shape constraints | References Page 25/28

References III

Filipović, D. and P. G. Schneider (2024). “Joint Estimation of Conditional Mean
and Covariance for Unbalanced Panels”. In: SSRN Electronic Journal.

— (2025). “Kernel Density Machines”. In: SSRN Electronic Journal.

Ghosal, S., A. Sen, and A. W. van der Vaart (2000). “Testing Monotonicity of
Regression”. In: The Annals of Statistics 28.4, pp. 1054–1082.

Groeneboom, P. and G. Jongbloed (2014). Nonparametric Estimation under
Shape Constraints: Estimators, Algorithms and Asymptotics. Cambridge
University Press.



Rohan Sen: Kernel-based nonparametric tests for shape constraints | References Page 26/28

References IV

Hansen, L. P. and R. Jagannathan (1991). “Implications of security market data
for models of dynamic economies”. In: Journal of political economy 99.2,
pp. 225–262.

Juditsky, A. and A. Nemirovski (2002). “On nonparametric tests of
positivity/monotonicity/convexity”. In: The Annals of Statistics 30.2.

Kozak (2020). “Kernel Trick for the Cross-Section”. In: SSRN Electronic Journal.

Luzzi, E., P. G. Schneider, and R. Sen (2025). “Learning the Stochastic Discount
Factor via Nonparametric Option Portfolios”. In: SSRN Electronic Journal.



Rohan Sen: Kernel-based nonparametric tests for shape constraints | References Page 27/28

References V

Marteau-Ferey, U., F. Bach, and A. Rudi (2020). “Non-parametric models for
non-negative functions”. In: Proceedings of the 34th International Conference
on Neural Information Processing Systems. NIPS ’20. Vancouver, BC, Canada:
Curran Associates Inc.

Muzellec, B., F. R. Bach, and A. Rudi (2021). “Learning PSD-valued functions
using kernel sums-of-squares”. In: ArXiv abs/2111.11306.

Schölkopf, B., R. Herbrich, and A. J. Smola (2001). “A Generalized Representer
Theorem”. In: Computational Learning Theory, pp. 416–426.

Seijo, E. and B. Sen (2011). “Nonparametric least squares estimation of a
multivariate convex regression function”. In: The Annals of Statistics 39.3,
pp. 1633–1657.



Rohan Sen: Kernel-based nonparametric tests for shape constraints | References Page 28/28

References VI

Shapiro, A. (1985). “Asymptotic Distribution of Test Statistics in the Analysis
of Moment Structures Under Inequality Constraints”. In: Biometrika 72.1,
pp. 133–144.

Wolak, F. A. (1987). “An Exact Test for Multiple Inequality and Equality
Constraints in the Linear Regression Model”. In: Journal of the American
Statistical Association 82.399, pp. 782–793.

Zhou, D.-X. (2008). “Derivative reproducing properties for kernel methods in
learning theory”. In: Journal of Computational and Applied Mathematics 220.1,
pp. 456–463.


	Motivation
	Research problem
	Contributions
	Related literature
	Methodology
	Statistical properties
	Inference for shape properties
	Application
	References

