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Motivation

Economic theory motivates shape restrictions: monotone or convex stochastic
discount factor.

Learning without parametric or structural assumptions.
Learn flexibly without imposing shape restrictions during estimation procedure.
Balancing reward and risk: mean-variance / Sharpe-optimal objective.

Need global, scalable inference applicable to large datasets.
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Research goal

EEm Build a flexible learning setup under a mean-variance objective.
Em Inference pipeline that can estimate economically relevant functions.

M Test their global shape restrictions (monotonicity/convexity) with statistical

guarantees.
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Contributions

mm Nonparametric learning framework under mean-variance objective that
depends on a function and its derivatives.

Finite-dimensional representation space for the optimal solution.

Statistical guarantees — consistency, asymptotic normality, finite-sample
deviation bound (high-probability).

Joint Wald-type test statistic for shape inference over grids.

Scalable computational procedure applicable for large datasets.
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Related literature

B Shape inference: Shapiro (1985), Wolak (1987), Ghosal et al. (2000),
Juditsky and Nemirovski (2002), and Birke and Neumeyer (2013).

B Shape-constrained estimation: Seijo and Sen (2011), Groeneboom and
Jongbloed (2014), Marteau-Ferey et al. (2020), Muzellec et al. (2021), and
Aubin-Frankowski and Szabo (2022).

MM Statistical learning: Schélkopf et al. (2001), Cucker and Smale (2001),
Caponnetto and De Vito (2007), Zhou (2008), Alaoui and Mahoney (2015),
and Filipovi¢ and Schneider (2025).

W Financial econometrics: Kozak (2020), Boudabsa and Filipovi¢ (2022),
Filipovi¢, Pelger, et al. (2022), Filipovi¢ and Schneider (2024), and Luzzi

et al. (2025).
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Outline

Methodology
Statistical properties
Inference for shape properties

Application
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Methodology

EE Specify admissible space of nonlinear functions as a Sobolev-type reproducing
kernel Hilbert space (RKHS) H that contains sufficiently smooth functions.

HCE(X),  (Fghu= Y (0%F,0%)p

loe|<s
E let z = (x,y) € X X Y be distributed according to underlying probability P.

EEE Target functional linear in unknown smooth function h € H and its derivatives:

R(h; z) := Z W (2) 0% h(x).

|a|<s

T
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Mean-variance optimization

E Population objective (Tikhonov regularized):

by = argmin {~E[R(hi2)] + JVIR(2)]+ AR} ()

mm Data {z; = (x,-,y,-)}‘-N:1 ~ P; empirical distribution P.= % 25\1:1 8z,
E Empirical objective (Tikhonov regularized):

~

hx = argmin {-E[R(h2)] + }VIR(h: 2]+ 31005} ()
heH

HEl Problems 1 and 2 are convex: mean — reward, variance — risk penalty,
regularization — complexity control.

T
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Optimal representation

Linearity implies mean and variance terms can be embedded in RKHS #.
Representer theorem: The optimal solution to Problem 2 has the form
N
hy = Z Z Croo 0% B(x1). (3)
i=1l |a|<s
Optimal working subspace: span{0%¢(x;) : |a| <5, 1 < i < N}

Nonparametric infinite-dimensional optimization becomes solving for finitely
many coefficients — solved via quadratic program.

T
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Asymptotic properties
Under some regularity assumptions, the following hold:
HEm Asymptotic consistency:
//;A 25 hy as N — oo.
HEEm Asymptotic normality:
VN (ZA - hA) 5 N(0,C),

where Cy: H — H is a covariance operator.

T
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Finite-sample properties

For any 6 € (0,1), it holds with sampling probability at least (1 — §):

Finite-sample deviation bound:
l[bx = hallse < Ces(6, [[Aa) A~ N2,
where Cgs is a positive coefficient.

High-probability bound matching Monte Carlo rate up to regularization.

Estimation error depends on confidence level §, size of true solution hy,
regularization hyperparameter A and sample size N.

T
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Inference for shape properties

Hm Test if shape property holds jointly on random grid Z := {fj };:1 CX.
mmm Object of interest: 6 := [Bah)\(ﬁj)};l e R
H Hypothesis test:
Hy:60>0 Vs H; : there exists j such that 6; < 0. (4)

B [east favorable null: @ = 0 (all inequalities binding).

Hm Examples: a = 0 — positivity, « =1 — monotonicity, « = 2 — convexity.

T
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Test statistic |
Emm Building blocks:
(i) Access to object of interest: 9 = [Ba/l;)\(fj)];:l € R",

(i) Consistent plug-in covariance matrix ﬁ)\ of Q) € R™n,

M Test statistic:

o~

Wi = min N (0 - c) @ (6-¢). (5)

E  Asymptotic distribution: Under least favorable null 8 = 0,

d — n
Wy -5 W ~ x2— (2, RY).

T



Rohan Sen: Kernel-based nonparametric tests for shape constraints | Inference for shape properties Page 14/28

Test statistic 1l

EEl Test statistic Wy is the scaled distance-to-feasibility for least favorable null.

L L ~—1/2
Hmm Measures the projection error under whitening by Q, ° .

mmm Computed via non-negative least squares:

/

Wy = Nmin|[@y Zc—b|}, b= 0,78

c>0

EEl The p-values are obtained by Monte Carlo calibration.

T
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Application: asset pricing

Hm Fundamental challenge in asset pricing: understand investors’ risk preferences
and how these shape market dynamics.

B Stochastic discount factor (SDF) prices assets: under no-arbitrage, price of
any asset is the expected value of its future payoff discounted by the SDF.

mH Defined by connecting physical probability P to risk-neutral probability Q:

M = 92 iy F¢ := information at time t.

Em Expected utility theory predicts SDF should be monotonically decreasing and
convex in returns — proportional to marginal utility.

T
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Learning the stochastic discount factor (Luzzi et al. (2025))

Estimate SDF without parametric or structural assumptions using options
trading strategy on the S&P 500.

Trade SDF (projected onto returns) via Carr-Madan option portfolio.

Equivalence between trading (shorting) the SDF and maximizing
mean-variance portfolio (Hansen and Jagannathan (1991)).

Optimal allocations in mean-variance sense identified by derivatives of SDF.

Take random grids of market returns and volatility states: test whether
estimated SDF satisfies monotonicity / convexity properties.

T
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Plot of SDF surface (monthly options)

SDF Surface — Monthlies
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Empirical p-value ECDFs — MONOTONICITY
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Empirical p-value ECDFs — CONVEXITY
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Empirical p-value ECDFs — CONCAVITY

L Monthlies 1 0DTEs
0.9} ! 1 o9} 1
08} | 1 o8} ]
0.74 {1 07h 1
06144 —0.05 1 06k 005 1
& : & :
805} | {1 8os} 1
A : = :
0.4F , 0.4 ¢ i
03} | {1 o3} 1
0.2+ —Low 0.2f —Low
| —Low-Mid | — Low-Mid
01 —Mid-High| 01 — Mid-High
0 K J —High 0 ! —High
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

p-value p-value



Rohan Sen: Kernel-based nonparametric tests for shape constraints | Application Page 21/28

Key takeaways

mmm Maturity and volatility heterogeneity: SDF varies strongly across maturity
horizons and also volatility states.

H Monthly options: SDF is near-linear and monotonically decreasing across

volatility states.

mm ODTE options: Monotonicity almost always rejected; convexity is not rejected
with very high p-values — consistent with U-shaped pattern.

EEl Results are robust across grids and grid sizes.

T
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