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Motivation

Accurate sparse representation of large samples of data.

Applications across disciplines faced with panel data with large
cross-section and time-series dimensions.

Scenarios reflecting sample moment information compatible with
available sample data.

Reconcile portfolio volatility from large samples parsimoniously.

Capture risk landscape of asset returns efficiently.

Moment matching within multivariate Gaussian mixture models
framework.



Contribution

Efficient solutions to scenario selection problem.

Superior accuracy, computationally faster, fewer scenarios than extant
algorithms.

Provide a computational framework that resolves stability issues.

Extend notion of choosing scenarios from quasi-Monte Carlo candidate
points towards sampling data.

Grant novel scenario-based representation for covariance matrices.

Prove that `1-regularized least squares is not effective for scenario
selection.



Preliminaries

Samples
X :=

{
x1, . . . , xN

}
⊂ Rd .

Empirical measure

P̂ :=
1

N

N∑
i=1

δxi .

Empirical moments

ŷα :=

∫
xα

dP̂, α ∈ Nd .

Empirical moment sequence (up to degree 2q)

ŷ =
[
ŷα
]
|α|≤2q

∈ Rm2q , m2q =

(
2q + d

d

)
.



Preliminaries

Scenarios
Ξ :=

{
ξ1, . . . , ξr

}
with r � N.

Compressed measure

P? :=

r∑
j=1

λj δξj λj ≥ 0,

r∑
j=1

λj = 1.

Moment sequence (up to degree 2q)

y? :=
[
y?
α

]
|α|≤2q

=

[∫
xα

dP?

]
|α|≤2q

∈ Rm2q .



Problem formulation

Compressed measure

P? :=
r∑

j=1

λj δξj λj ≥ 0,
r∑

j=1

λj = 1.

Optimization problem
argmin

r,ξ1,...,ξr ,λ1,...,λr

∥∥ y? − ŷ
∥∥
2
.

Obtaining the sparsest solution is non-convex and NP-hard in general.

`1-regularized least squares or LASSO does not solve the problem.



Relaxed formulation

Relaxed convex formulation done in two stages.

Scenario selection
argmin
ξ1,...,ξr

∥∥ y? − ŷ
∥∥
2
.

Greedy choice of representative basis (evaluated at samples).

Computational framework allows equivalent reformulation ensuring
sparsity and stability.

Retrieval of weights by enforcing probability constraints.



Portfolio optimization using scenarios

Portfolio optimization with expected shortfall constraint using scenarios



Reconciling portfolio volatility
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Sample correlation
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Scenarios correlation

Comparison of sample correlation with scenarios.

Relative error of order 10−16 with 26 scenarios from 25000 observations.

Covariance scenarios match exactly up to second moments.



Multivariate Gaussian mixture models

PDF of a Gaussian mixture distribution in R2 with 10 clusters



Relative error comparison

Comparison of relative errors of different algorithms



Computation time comparison

Comparison of computation times of different algorithms



Number of scenarios comparison

Comparison of number of scenarios extracted by the different algorithms



Acknowledgement

This project has been funded by the



References
Claudia Bittante, Stefano De Marchi, and Giacomo Elefante.
A new quasi-Monte Carlo technique based on nonnegative least squares and approximate Fekete points.
Numerical Mathematics: Theory, Methods and Applications, 9(4), 2016.

Jean-Luc Bouchot, Simon Foucart, and Pawel Hitczenko.
Hard thresholding pursuit algorithms: Number of iterations.
Applied and Computational Harmonic Analysis, 41(2), 2016.
Sparse Representations with Applications in Imaging Science, Data Analysis, and Beyond, Part II.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3, 01 2011.

H. Harbrecht, M. Peters, and R. Schneider.
On the low-rank approximation by the pivoted Cholesky decomposition.
Applied Numerical Mathematics, 62:28–440, 2012.

Jean Bernard Lasserre.
Moments, Positive Polynomials and Their Applications.
Imperial College Press, London, 2010.

Ernest K. Ryu and Stephen P. Boyd.
Extensions of Gauss Quadrature Via Linear Programming.
Foundations of Computational Mathematics, 15(4), Aug 2015.



Benchmark quadrature rules
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Gauss-Legendre nodes
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Clenshaw-Curtis nodes

Comparison of scenarios with Gaussian and Clenshaw-Curtis nodes in [0, 1].

Exactly integrates up to 2q and q moments respectively.

Successful recoveries with sparse scenarios from 10, 000 samples.



Orthogonal matching pursuit

input: kernel matrix K ∈ RN×N , vector h ∈ RN , tolerance ε > 0

output: index set ind, low-rank approximation K ≈ LL>

and bi-orthogonal basis B such that B>L = Im

1: initialization: set L0 = B0 = ind = [ ], d0 = diag(K), h0 = h, err = 1, m = 1

2: while err > ε

3: pm := argmax1≤i≤m2q dm−1,i , ind := [ind, pm]

4: `m := 1√
dm−1,pm

(
K − LL>

)
epm , bm := 1√

dm−1,pm

(
I − BL>

)
epm

5: set L := [L, `m], B := [B, bm]

6: set dm := dm−1 − `m � `m

7: set hm := hm−1 − (h>bm)`m

8: set err := ‖hm‖2 / ‖h‖2
9: set m := m + 1

10: end


