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INTRODUCTION



MOTIVATION

• Quadrature rules approximate integrals through a small number of
nodes and weights pertaining to a discrete probability measure.

• These nodes parsimoniously describe the important states or scenarios
that are the best low-dimensional representation of the underlying
complicated distribution.

• These scenarios reconcile moment matrices that often feature in many
applied situations.

• Our goal is to extract these low-dimensional scenarios and their
probabilities from large and high-dimensional datasets.



CONTRIBUTION

• The extant algorithms do not scale well when solving large and
high-dimensional problems and also suffer from numerical instability.

• We propose algorithms that are tractable and computationally efficient
at the same and are founded on the intersection of the truncated
moment problem from probability theory and reproducing kernel
Hilbert spaces.

• We propose a novel approach for the extraction of the scenarios and
their probabilities for the specialized case of covariance matrices of
high-dimensional random variables.

• We also modify Lasserre’s algorithm for multivariate Gaussian
quadrature that partially remedies its numerical instability and
significantly improves its computational complexity.



TERMINOLOGIES

Notations

• S(H) : space of symmetric matrices onH

• A ⪰ 0 : A is positive semi-definite matrix

• A ∈ SN
+ : A ∈ RN×N is symmetric and positive semi-definite

• P t(Ω) : space of multivariate polynomials on Ω of maximum degree t

• s(t) :
(d+t

t
)

• ∥ · ∥F : Frobenius norm

• || · ||⋆ : trace norm



TRUNCATED MOMENT PROBLEM



MOMENT SEQUENCE AND LINEAR FORM

Truncated sequence (in d variables and of degree t):

y =
(
yα

)
where α ∈ Nd

t :=
{(

α1, · · · , αd
)
: αi ∈ N, |α1 + · · ·+ αd| ≤ t

}

Truncated moment sequence (tms):

yα =

∫
Ω

xαdµ(x) where xα := xα1
1 · · · xαd

d

Monomial basis for P t = span
{

xα : |α| ≤ t
}
:

τt(x) :=
[
1, x1, · · · , xd, · · · , xt

1, · · · , xt
d
]
∈ Rs(t)

Riesz functional: Given y =
(
yα

)
define Ly ∈

(
R[x]

)∗ as:
Ly(p) :=

∑
α

pαyα for p =
∑
α

pαxα
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TRUNCATED MOMENT PROBLEM

The truncated moment problem:

Given a truncated sequence y, does there exist a representing measure µ

and if so, how to obtain it.

A crucial fact:

Every truncated moment sequence has a representing measure that is a

convex combination of at most s(t) =
(d+t

t
)
many Dirac measures.

Relation with quadrature rules:

Finding measures with a small number of atoms is the equivalent to the

problem of finding quadrature rules.
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MOMENT MATRIX

Moment matrix: Given y =
(
yγ

)
|γ|≤2t , define Mt(y) ∈ Rs(t)×s(t) as:

Mt(y)α,β := Ly
(
τtτ

⊤
t
)
α,β

= Ly
(
xα+β) = yα+β

Example for d = t = 2 :

M2(y) =



y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


For ỹ =

(
ỹα

)
α∈Nd , we have M

(
ỹ
)
α,β

= ỹα+β for α,β ∈ Nd
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FLAT EXTENSION

Let X be a symmetric matrix with block form

X =

(
A B

B⊤ C

)

X is called a flat extension of A if

rank X = rank A

If X is a flat extension of A, then X ⪰ 0 ⇐⇒ A ⪰ 0.

Flat extension theorem: For y =
(
yα

)
|α|≤2t , if Mt(y) is a flat extension of

Mt−1(y), then there exists a (unique) sequence ỹ =
(
ỹα

)
α∈Nd for which

M(ỹ) is flat extension of Mt(y).
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FINITE ATOMIC REPRESENTING MEASURES

Theorem 1: ỹ has a unique representing measure µ which is r-atomic with

supp(µ) = VR

(
Ker M

(
ỹ
))

⊆ Rd~�
M(ỹ) ⪰ 0 and rank M(ỹ) = r

Theorem 2: y has a unique representing measure µ which is r-atomic with

supp(µ) = VR

(〈
Ker Mt(y)

〉)
⊆ Rd~�

Mt(y) ⪰ 0 and rank Mt(y) = rank Mt−1(y) = r

Scenario representation:

µ =
r∑

i=1
pi δξi where Ξ :=

{
ξ1, · · · , ξr

}
= VR

(〈
Ker Mt(y)

〉)
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SCENARIOS

Moment matrix representation:

Mt(y) =
r∑

i=1
pi τt

(
ξi
)
τt
(
ξi
)⊤

Vandermonde form:

Mt(y) = Vt
(
Ξ, τ

)⊤ DVt
(
Ξ, τ

)
with D := diag

(
p1, · · · , pr

)
Vandermonde matrix:

Vt
(
Ξ, τ

)
=

[
τt
(
ξ1
)
, · · · , τt

(
ξr
)]⊤

∈ Rr×s(t)

Gaussian Quadrature: Lasserre’s algorithm for finding a finite atomic

representing measure coincides with that of constructing a quadrature rule

with minimal number of nodes, known as Gaussian quadrature.
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MODIFICATIONS

Flat extension: Obtained via an SDP that is a trace minimization problem.

Numerical rank computation: No guarantee of convergence of the SDP

whose size grows exponentially fast, and also necessitates the numerical

rank computation of the input moment matrix.

Pivoted Cholesky decomposition: Circumvents the computational cost of the

usual Cholesky and can be made rank-revealing, also performs Gaussian

elimination in a numerically most favorable way.
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MODIFIED LASSERRE’S ALGORITHM

Algorithm 3 (extraction algorithm) :

• Input: The moment matrix Mt(y) with rank Mt(y) = r

• Output: The r nodes Ξ =
[
ξ1, · · · , ξr

]
1: Perform pivoted Cholesky decomposition to get

P⊤Mt(y)P = P⊤V⊤
t DVtP = Ṽ⊤

t DṼt = LL⊤

2: Reduce L to an echelon form L̃.

3: Extract from L̃ the multiplication matrices Ni, i = 1, · · · , d.

4: Compute N :=
∑d

i=1 ρiNi with random convex combination.

5: Compute the Schur decomposition N = QTQ⊤ with Q =
[
q1 · · · qr

]
.

6: Extract ξj(i) = q⊤
j Niqj, i = 1, · · · , d; j = 1, · · · , r.



LEAST-SQUARES WEIGHTS

Algorithm 4 (least-squares weights) :

• Input: The moment matrix Mt(y) with rank Mt(y) = r

• Output: The r probability weights p = [p1, · · · , pr]

1: Compute the generalized inverse (for instance using SVD) V† of Mt(y)

2: Compute my := diag
(
(V†)⊤Mt(y)V†

)
3: With p := diag(D) perform the minimization with :

minimize
p∈Rr

+

∥∥my − p
∥∥2

2

subject to: 1⊤p = 1



EMPIRICAL PROBLEM



EMPIRICAL TRUNCATED MOMENT PROBLEM

Training sample (drawn from µ):

X =
{

x̃1, · · · , x̃N

}
⊂ Ω ⊆ Rd with Ω Hausdorff and locally compact

Empirical probability measure:

µ̂ =
1
N

N∑
i=1

δx̃i

Empirical moment sequence:

ŷα =

∫
Ω

xα dµ̂(x) where |α| ≤ 2t

Empirical moment matrix:

M̂t =
1
N

N∑
i=1
τt
(
x̃i
)
τt
(
x̃i
)⊤ ∈ Rs(t)×s(t)
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MEASURE COMPRESSION

Target compressed measure:

µ̃ =
r∑

i=1
pi δξi where Ξ :=

{
ξ1, · · · , ξr

}
⊂ X with r ≪ N

Model moment matrix:

M̃t =
r∑

i=1
pi τt

(
ξi
)
τt
(
ξi
)⊤

= Vt
(
Ξ, τ

)⊤ diag(p)Vt
(
Ξ, τ

)
∈ Rs(t)×s(t)

Optimization Problem:

argmin
ξi∈Rd, i=1,··· ,r

p∈Rr

∥∥∥ M̂t − Vt
(
Ξ, τ

)⊤ diag(p) Vt
(
Ξ, τ

) ∥∥∥
F

(1)

subject to: 1⊤p = 1
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FRAMEWORK PROPOSAL

Observations

• (1) is a non-convex optimization problem in general (except when t = 1)
in the nodes ξi and the probability weights pi for i = 1, · · · , r.

• The problem of matching the empirical moments with the model
moments is in general, under-determined since we have r ≤ s(t) ≪ N.

• The Vandermonde representation of the positive semi-definite M̃t

pertaining to the minimal generating measure is precisely in the
optimal form as in the model proposed by Bach, Rudi et. al. within the
RKHS framework.

• We develop a relaxation of the optimization problem (1) and
reformulate it within the RKHS framework, which makes it convex.



METHODOLOGY



REPRODUCING KERNEL HILBERT SPACE (RKHS)

Let
(
H, ⟨·, ·⟩H

)
⊆ RΩ be a separable Hilbert space of functions with

Ω ⊆ Rd.

Then ∃ a unique reproducing kernel k : Ω×Ω −→ R such that:

∀ x ∈ Ω, kx := k(x, ·) ∈ H

∀ f ∈ H, f(x) = ⟨f, kx⟩H ∀ x ∈ Ω

k is a symmetric and positive definite kernel i.e. for any finite

X =
{

x̃1, · · · , x̃N
}
⊂ Ω, K :=

[
k
(
x̃i, x̃j

)]N

i,j=1
∈ SN

+

Corollary: ∀ x, x̃ ∈ Ω, ⟨kx, kx̃⟩H = ⟨ϕ(x), ϕ(x̃)⟩H
7



INTUITION

Figure 1: RKHS



FRAMEWORK

Model:

fA(x) = ϕ(x)⊤ A ϕ(x), A ∈ S+(H) (2)

Objective Function:

inf
A∈S+(H)

L
(

fA
(
ξ1
)
, · · · , fA

(
ξr
))

+ λ1||A||⋆ + λ2||A||2F︸ ︷︷ ︸
Ω̃(A)

, λ2 > 0 (3)

Representer Theorem: Let L be lower semi-continuous, bounded below and

convex, and Ω̃(A) be as above. Then (3) has a unique minimizer

A∗ =
r∑

i=1

r∑
j=1

Bij ϕ
(
ξi
)
ϕ
(
ξj
)⊤ B ∈ Rr×r, B ⪰ 0 (4)
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SETUP

RKHS:(
H, ⟨·, ·⟩H

)
:= span

{
xα : x ∈ Ω, |α| ≤ t

}
= P t(Ω)

with L2
µ(Ω) inner product ⟨f, g⟩H =

∫
Ω

f(x) g(x) dµ(x)

Monomial basis:

τt(x) :=
[
1, x1, · · · , xd, · · · , xt

1, · · · , xt
d
]⊤ ∈ Rs(t)

Gram matrix:[
Gt

]
α,β

= ⟨τt, τ
⊤
t ⟩H =

∫
Ω

xα+β dµ(x) |α| , |β| ≤ t

Reproducing Kernel:

kt(x, x̃) = τt(x)⊤ G†
t τt(x̃) ∀ x, x̃ ∈ Ω
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NUMERICS

Empirical Gram matrix:

[
Ĝt

]
α,β

:=

∫
Ω

x̃α+β dµ̂(x) =
1
N

N∑
i=1

x̃α+β
i ∈ Rs(t)×s(t)

Discrete orthonormal basis:

ψt(x) :=
(

Ĝ†
t

)1/2
τt(x)

Kernel matrix:

Kt =
[

kt
(
x̃i, x̃j

)]N

i,j=1
= Vt

(
X , τ

)
G†

t Vt
(
X , τ

)⊤
= Qt

(
X , τ

)
Qt
(
X , τ

)⊤
Qt
(
X , τ

)
=

[
ψt
(
x̃1
)
, · · · ,ψt

(
x̃N
)]⊤

∈ RN×s(t)
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IMPLEMENTATION

Low-rank approximation

• We would like to extract a suitable subsample of size r ≪ N from the
original sample such that they correspond to the optimal nodes.

• Computing the spectral decomposition of Kt can be severely
prohibitive as the computational cost is O(N3).

• Hence, we will use the diagonally pivoted Cholesky decomposition to
select r columns which span the dominant subspace generated by the
corresponding kernel functions.

• The said algorithm resorts to a greedy strategy that reduces the trace of
the kernel matrix in an iterative manner.

• The computational cost of the pivoted Cholesky is O(r2N).



PIVOTED CHOLESKY DECOMPOSITION

Algorithm 2 (pivoted Cholesky decomposition) :

• input: symmetric and positive semi-definite M ∈ Rs×s, tolerance ε ≥ 0

• output: low-rank approximation M ≈ LL⊤

1: initialization: set m := 1, d := diag(M), L := [ ], err := ∥d∥1

2: while err > ε

3: determine j := argmax1≤i≤s di

4: compute ℓ̂m := M(:, j)− L ∗ L⊤(:, j)

5: set ℓm := ℓ̂m/
√

dj

6: set L := [L, ℓm]

7: set d := d − ℓm ⊙ ℓm

8: set err := ∥d∥1

9: set m := m + 1



FAST EMPIRICAL SCENARIOS

Algorithm 5 (fast empirical scenarios) :

• Input: The N samples X =
{

x̃1, · · · , x̃N
}

• Output: The r nodes Ξ =
[
ξ1, · · · , ξr

]
and probability weights

p =
[
p1, · · · , pr

]
1: Compute the empirical moment matrix M̂t and empirical kernel matrixKt

2: Perform the pivoted Cholesky decomposition on Kt to obtain the r nodes

Ξ =
[
ξ1, · · · , ξr

]
that generate the dominant subspace

3: Perform the following optimization problem:

argmin
p∈Rr

+

∥∥∥ M̂t − Vt
(
Ξ, τ

)⊤ diag(p) Vt
(
Ξ, τ

) ∥∥∥
F

(5)

subject to: 1⊤p = 1

to obtain the probabilities p =
[
p1, · · · pr

]



COVARIANCE SCENARIOS

M1(y) = L L⊤.

Let Hv be the Householder reflector, then we have the Vandermonde form:

M1(y) = L H⊤
v Hv L⊤ = V D V⊤

When t = 1 :

The optimization problem (1) is convex as the Vandermonde matrix is linear

in the probability weights and directly solves the interpolation problem
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FIGURES



LASSERRE’S GAUSSIAN QUADRATURE
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RKHS SCENARIOS (ORDER 1)
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RKHS SCENARIOS (ORDER 2)
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COVARIANCE SCENARIOS
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SAMPLE PDF

Dimension = 2, Clusters = 10



COMPUTATION TIMES
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