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INTRODUCTION



MOTIVATION

- Quadrature rules approximate integrals through a small number of
nodes and weights pertaining to a discrete probability measure.

- These nodes parsimoniously describe the important states or scenarios
that are the best low-dimensional representation of the underlying
complicated distribution.

- These scenarios reconcile moment matrices that often feature in many
applied situations.

- Our goal is to extract these low-dimensional scenarios and their
probabilities from large and high-dimensional datasets.



CONTRIBUTION

- The extant algorithms do not scale well when solving large and
high-dimensional problems and also suffer from numerical instability.

- We propose algorithms that are tractable and computationally efficient
at the same and are founded on the intersection of the truncated
moment problem from probability theory and reproducing kernel
Hilbert spaces.

- We propose a novel approach for the extraction of the scenarios and
their probabilities for the specialized case of covariance matrices of
high-dimensional random variables.

- We also modify Lasserre’s algorithm for multivariate Gaussian
quadrature that partially remedies its numerical instability and
significantly improves its computational complexity.



TERMINOLOGIES

Notations
- S(H) : space of symmetric matrices on ‘H
- A >=0: Ais positive semi-definite matrix
- AeSY: AecRYNissymmetric and positive semi-definite
- P.(2) : space of multivariate polynomials on € of maximum degree ¢
s+ ()
|l - |# : Frobenius norm

* || - ||% : trace norm



TRUNCATED MOMENT PROBLEM




MOMENT SEQUENCE AND LINEAR FORM

Truncated sequence (in d variables and of degree 1):

y= (ya) where aEN? ::{(a1,~-- ,ad) :ai6N7|a1+---+o¢d|§t}

Truncated moment sequence (tms):

Yo = /Qa:o‘du(a:) where % := 71 ... })°

Monomial basis for P, = span {z® : |a| < t}:

Tf(m) = [17:1',17"' y Tdy * " * 71{7"' 7:1'{1] S RSU)

Riesz functional: Given y = (ya) define .%, € (R[a])" as:

Zp) = Y paya for p = 3 paa™



TRUNCATED MOMENT PROBLEM

The truncated moment problem:
Given a truncated sequence y, does there exist a representing measure p

and if so, how to obtain it.

A crucial fact:
Every truncated moment sequence has a representing measure that is a

convex combination of at most s(t) = (**) many Dirac measures.

Relation with quadrature rules:
Finding measures with a small number of atoms is the equivalent to the

problem of finding quadrature rules.



MOMENT MATRIX

Moment matrix: Given y = (y) define M;(y) € R*W>*( as:

[vI<2t !

MY ap = gy(TtTtT) = gy("’a-'—ﬁ) = Yo+pB

o,8

Example ford=t=2:

Yoo Yo Yor Y20 Y11 Yoz
Yio Y20 Y11 Yo Y21 Y12
Yo1 Y11 Yo2 Y21 Y12  Yo3
Y20 Y30 Y21 Ya0 Y31 Y22
Y11 Y21 Y12 Y31 Y22 Y13

Yo2 Y12 Yos Y22 Y13 Yoa

For y = (Ya) e, Wehave M(y) 5= Jatp for a,Be N



FLAT EXTENSION

Let X be a symmetric matrix with block form

A B
X =

X is called a flat extension of A if
rank X = rank A

If X is a flat extension of 4,then X >0 < A > 0.

Flat extension theorem: For y = (ya) if M;(y) is a flat extension of

laf<2¢?

M,_1(y), then there exists a (unique) sequence § = (¥a) , s for which

M(7y) is flat extension of M,(y).



FINITE ATOMIC REPRESENTING MEASURES

Theorem 1: y has a unique representing measure p which is r-atomic with
supp(p) = Vr (Ker M(@)) C R¢

T

M(y) =0 and rankM(y) =r

Theorem 2: y has a unique representing measure p which is r-atomic with
supp(p) = VR(<K67“ Mt(y)>) C R¢

¥

Mi(y) =0 and rank My(y) = rank My_1(y) = r

Scenario representation:

uw = iqu(sgi where 2 := {gl’... 757‘} = VR(<KerM,,(y)>>



SCENARIOS

Moment matrix representation:
M;(y) = Zpﬂt(&)n(&)T
=1l
Vandermonde form:
My(y) = Vi(E, T)T DV,(E8,7) with D := diag(ps,---,pr)

Vandermonde matrix:

T (T
Vt(E7 T) = |:Tt(£1)7 Tt (&r)i| S RTXS( )

Gaussian Quadrature: Lasserre’s algorithm for finding a finite atomic
representing measure coincides with that of constructing a quadrature rule

with minimal number of nodes, known as Gaussian quadrature.



MODIFICATIONS

Flat extension: Obtained via an SDP that is a trace minimization problem.

Numerical rank computation: No guarantee of convergence of the SDP
whose size grows exponentially fast, and also necessitates the numerical

rank computation of the input moment matrix.

Pivoted Cholesky decomposition: Circumvents the computational cost of the
usual Cholesky and can be made rank-revealing, also performs Gaussian

elimination in a numerically most favorable way.



MODIFIED LASSERRE'S ALGORITHM

Algorithm 3 (extraction algorithm) :
- Input: The moment matrix My(y) with rank My(y) = r
- Output: The rnodes & = [&1,- -+, &
1: Perform pivoted Cholesky decomposition to get
P'M,(y)P=P"V,DV,P=V,DV,=LL"

2: Reduce L to an echelon form L.

3: Extract from L the multiplication matrices N;,i=1,--- ,d.

4 Compute N := Zle p:N; with random convex combination.

5: Compute the Schur decomposition N= QTQ" with @ = [q1 - ¢.].

6: Extract &(d) = q) Nigj,i=1,---,d; j=1,---,n



LEAST-SQUARES WEIGHTS

Algorithm & (least-squares weights) :

- Input: The moment matrix My(y) with rank My(y) = r
- Output: The r probability weights p = [p1,- - , p/]

1. Compute the generalized inverse (for instance using SVD) V' of My (y)
2: Compute my := diag((W)TMt(y) W)

3: With p := diag(D) perform the minimization with :

minimize ||my — p||>
PERT, 2

subjectto: 1'p = 1



EMPIRICAL PROBLEM



EMPIRICAL TRUNCATED MOMENT PROBLEM

Training sample (drawn from p):

X = {:”cl,m ch} c © C R with Q Hausdorffand locally compact
Empirical probability measure:

1 N
Bo= 0w
i=1

Empirical moment sequence:

Yo = / =™ di(z) where |af < 2t
Q

Empirical moment matrix:

N
— 1 ~ ~ s(t s(t



MEASURE COMPRESSION

Target Compressed measure:

=

= > pide, where E = {gl,.-- g} C X with r< N
=1

Model moment matrix:

Mz = Z]h‘ﬂ(ﬁi) Tt(£i>—r = Vt(Eﬂ')Tdm!](I’) Vt(E,‘r) e R0
i=1

Optimization Problem:

argmain H M, — Vt(E,T)T L ORACES HF

&€R?, =1, 1
PER"

subjectto: 17p = 1



FRAMEWORK PROPOSAL

Observations

- (1) is a non-convex optimization problem in general (except when ¢ = 1)
in the nodes &; and the probability weights p; fori=1,--- , 7.

- The problem of matching the empirical moments with the model
moments is in general, under-determined since we have r < s(t) < N.

- The Vandermonde representation of the positive semi-definite M,
pertaining to the minimal generating measure is precisely in the
optimal form as in the model proposed by Bach, Rudi et. al. within the
RKHS framework.

- We develop a relaxation of the optimization problem (1) and
reformulate it within the RKHS framework, which makes it convex.



METHODOLOGY




REPRODUCING KERNEL HILBERT SPACE (RKHS)
Let (H, (-,-)») C R be a separable Hilbert space of functions with
Q C R4
Then 3 a unique reproducing kernel k£ : © x @ — R such that:
VeeQ, k = kz,-) € H
VieH, flx) = ke V z€ Q

kis a symmetric and positive definite kernel i.e. for any finite

N N
X = {&, -, an}CQ K= [k(%ivfﬂj)] S &

i,j=1

Corollary: V , € Q, (kn,ka)nu = (d(x),d(Z))n



INTUITION




FRAMEWORK

Model:

fa) = ()" Ad(z), A € Si(H) 2)

Objective Function:

et L(fa(r) - fa(€)) + MllAllx +2ellAlE Xe>0 ()

Q(4)

Representer Theorem: Let L be lower semi-continuous, bounded below and

convex, and Q(A) be as above. Then (3) has a unique minimizer

Ao = > 3 Bso(&)6(&)’  BER™, Bro (4)

i=1 j=1



SETUP

RKHS:
(’H, <.,~>H) 3= span{ma cxz e Q|al < t} = P(Q)
with L2 () inner product (f, g) /f (2)

Monomial basis:

Tt(w) = [13 T, 5 Xdy 7I§7"' 7I31:|T S RS(t)

Gram matrix:

@], = i = [ &P duta) al, lg] <t
a, Q

Reproducing Kernel:

ki(x,z) = () Glm(z) Vo zeQ



NUMERICS

Empirical Gram matrix:

N
’é} — / a+ﬁd 728 o ReDxs()
[ ! o, Q e Z:

Discrete orthonormal basis:

Pi(z) = (@)1/2%(%’)

Kernel matrix:

_ = 2y t T
K = [k(@ &)] Vi(X,7) G Vi(x,T)

4,j=1

Q(x,7)Qx,7)’

Q(x,7) = [¢t(®1),'~~,¢t(5:N)]T c RV



IMPLEMENTATION

Low-rank approximation

- We would like to extract a suitable subsample of size r < N from the
original sample such that they correspond to the optimal nodes.

- Computing the spectral decomposition of K; can be severely
prohibitive as the computational cost is O(N?).

- Hence, we will use the diagonally pivoted Cholesky decomposition to
select r columns which span the dominant subspace generated by the
corresponding kernel functions.

- The said algorithm resorts to a greedy strategy that reduces the trace of
the kernel matrix in an iterative manner.

- The computational cost of the pivoted Cholesky is O(r*N).



PIVOTED CHOLESKY DECOMPOSITION

Algorithm 2 (pivoted Cholesky decomposition) :
- input: symmetric and positive semi-definite M € R**, tolerance ¢ > 0
- output: low-rank approximation M~ LLT

1: initialization: set m := 1, d := diag(M), L := [], err := ||d]|1

2: while err > ¢

3 determine j:= arg maxi<;<s d;

4 compute £, := M(:,5) — L+ L' (:,5)

5 setly i=Ln/\/d

6: set L :=[L,£,]

7. setd:=d—¥¢,,04,

8: set err := ||d||1

9: setm:=m+1



FAST EMPIRICAL SCENARIOS

Algorithm 5 (fast empirical scenarios) :
- Input: The Nsamples X = {&:,--- ,Zn}
- Output: The rnodes & = [&1,- - -, &, and probability weights
p= [p1,--- 77”1
1: Compute the empirical moment matrix M, and empirical kernel matrix K;
2: Perform the pivoted Cholesky decomposition on K; to obtain the » nodes

E = [&1,- -+ ,&] that generate the dominant subspace

3: Perform the following optimization problem:

argmin H M, — Vt(E,T)T diag(p) Vi(E, ) H (5)
PERT, F

subjectto: 1'p = 1

to obtain the probabilities p = [p1,- - pr|



COVARIANCE SCENARIOS

M(y) = LL".

Let H, be the Householder reflector, then we have the Vandermonde form:

Mi(y) = LH, HL' = VDV’

Whent=1:
The optimization problem (1) is convex as the Vandermonde matrix is linear

in the probability weights and directly solves the interpolation problem



FIGURES




LASSERRE’'S GAUSSIAN QUADRATURE
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RKHS SCENARIOS (ORDER 1)
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RKHS SCENARIOS (ORDER 2)
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COVARIANCE SCENARIOS
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SAMPLE PDF

Dimension = 2, Clusters = 10
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